Berkeley.Intel-Research.net, 2/17/05
Ali Rahimi1, Ben Recht 2, Jason Taylor 2, Noah Vawter 2
Abstract
Among a fringe community of paranoids, aluminum helmets serve as the protective measure of choice against invasive radio signals. We investigate the efficacy of three aluminum helmet designs on a sample group of four individuals. Using a $250,000 network analyser, we find that although on average all helmets attenuate invasive radio frequencies in either directions (either emanating from an outside source, or emanating from the cranium of the subject), certain frequencies are in fact greatly amplified. These amplified frequencies coincide with radio bands reserved for government use according to the Federal Communication Commission (FCC). Statistical evidence suggests the use of helmets may in fact enhance the government's invasive abilities. We speculate that the government may in fact have started the helmet craze for this reason.
Introduction
It has long been suspected that the government has been using satellites to read and control the minds of certain citizens. The use of aluminum helmets has been a common guerrilla tactic against the government's invasive tactics [1]. Surprisingly, these helmets can in fact help the government spy on citizens by amplifying certain key frequency ranges reserved for government use. In addition, none of the three helmets we analyzed provided significant attenuation to most frequency bands.
We describe our experimental setup, report our results, and conclude with a few design guidelines for constructing more effective helmets.
Experimental Setup
The Three Helmet Types Tested
The Classical
The Fez
The Centurion
We evaluated the performance of three different helmet designs, commonly referred to as the Classical, the Fez, and the Centurion. These designs are portrayed in Figure 1. The helmets were made of Reynolds aluminium foil. As per best practices, all three designs were constructed with the double layering technique described elsewhere [2].
A radio-frequency test signal sweeping the ranges from 10 Khz to 3 Ghz was generated using an omnidirectional antenna attached to the Agilent 8714ET's signal generator.
A network analyser (Agilent 8714ET) and a directional antenna measured and plotted the signals. See Figure 2.
Because of the cost of the equipment (about $250,000), and the limited time for which we had access to these devices, the subjects and experimenters performed a few dry runs before the actual experiment (see Figure 3).
To read the rest of this story, visit berkeley.intel-research.net.
Comments
I guess no one thought of
I guess no one thought of using cork??
or concrete
or concrete
or
lead
I am soooo not going to wear a Tinfoil Toga!!
[..."certain frequencies are in fact greatly amplified. These amplified frequencies coincide with radio bands reserved for government use according to the Federal Communication Commission (FCC). Statistical evidence suggests the use of helmets may in fact enhance the government's invasive abilities. We speculate that the government may in fact have started the helmet craze for this reason.]
Or is this perhaps COINTELPRO?! LOL. It's all so confusing. I think I'll just go with SaranWrap! ;-)
They can't get you, Missy!
They can't get you, Missy! Your LIGHT is too bright! WOO HOO!
Is it possible to run a
Is it possible to run a personal fan atop a hat with these energies?